
This is a post-peer-review, pre-copyedit version of the paper presented at 28
th

 Pacific Rim Symposium on Dependable Computing

(PRDC 2023) and published by IEEE Xplore. The definitive authenticated version is available at:

https://doi.org/10.1109/PRDC59308.2023.00022

Development of the System Assurance Reference

Model for Generating Modular Assurance Cases

Andrzej Wardziński*, Aleksander Jarzębowicz*†

* Argevide, Gdańsk, Poland

{andrzej.wardzinski, aleksander.jarzebowicz}@argevide.com

† Department of Software Engineering, Faculty of Electronics, Telecommunications and Informatics,

Gdańsk University of Technology, Gdańsk, Poland

olek@eti.pg.edu.pl, ORCID: 0000-0003-3181-4210

Abstract— Assurance cases are structured arguments used to

demonstrate specific system properties such as safety or security.

They are used in many industrial sectors including automotive,

aviation and medical devices. Larger assurance cases are usually

divided into modules to manage the complexity and distribute the

work. Each of the modules is developed to address specific goals

allocated to the specific objects i.e. components of the system’s

architecture. Such goals are applicable for given conditions of

use, for instance, operational modes or target environments. It is

recommended that the complete context of each of the argument

modules, encompassing information about systems/components,

goals and conditions of use, is described explicitly to enable

efficient management and proper use of each module. This

becomes even more important for component-based design,

including the use of out-of-context components. In this paper, we

describe a concept of a generic System Assurance Reference

Model (SARM), which bridges the gap between assurance cases

and the related context models. We identify the key factors that

condition the high-level assurance case structure, explain how

they can drive its decomposition into assurance case modules and

outline the process of creating and using context models. We

present a prototype solution which implements the SARM model

and enables automatic data flow between models and assurance

cases.

Keywords—assurance case, safety case, argument templates,

context models, contract-based design

I. INTRODUCTION

Assurances cases (ACs) are gaining increasing interest in
industry, as their development and submission is required for
high-assurance systems by a number of standards from several
business domains, such as automotive [1][2], railway [3],
aviation [4], autonomous systems [5] and medical devices [6].
An AC is a structured argument that justifies a claim about a
specific property or properties of a considered system through
an explicit chain of reasoning based on a body of evidence [7].
The top claim is supported by reasoning and the subclaims,
which in turn need to be supported by further subclaims or
evidence. The line of reasoning should be presented in an
explicit way down to the level of supporting evidence. ACs are
most commonly used to justify safety e.g. [1][3] (and as such

are called safety assurance cases or simply safety cases), but
other properties such as security [2] and dependability [8] are
considered as well.

Despite such growing interest, the current state of practice
is reported to be coping with several problems [9]-[11]. For
example, an interview study with AC practitioners focused on
challenges related to their work [9] revealed the most important
problems to be those associated with the size and complexity
of developed systems (and the corresponding ACs) and with
change management. The main underlying factors behind such
challenges according to [9] were: limited tool support
(inadequate to practitioners’ needs) and insufficient process
integration between AC development and other project
activities supported by other tools.

Contemporary systems usually consist of a large number of
subsystems and components, organized in multiple levels of
decomposition [12][13]. Moreover, several versions or variants
of such system can be developed by substituting some
components with others or adding/removing components
responsible for specific features, which results in families of
similar systems i.e., product lines [14]. AC development tasks
are interrelated with other activities dedicated to the
construction of the corresponding system and the overall
system development lifecycle [11][15]. The influence between
them is mutual. On the one hand, an AC uses (as evidence) the
products of other activities e.g. system architecture, hazard list,
test results. On the other hand, the work on AC development
can result in changes regarding design decisions or the need to
perform additional quality assurance actions. Consequently,
there is a need for process integration to ensure that traceability
is maintained, and changes are promptly reflected in all related
artefacts. Attempts to adopt the Agile approach to high-
assurance systems development [16][17] and recent ideas of
continuous assurance [13][18] make this need even more
crucial as shorter iterations and feedback loops require more
rapid responses and more effective change management. In the
case of Agile projects, automation is a necessary condition as
they usually rely on DevOps and automated releases.

`

A number of AC-supporting software tools are available
[19][20]. However, significant demand for advanced AC
tools—especially with respect to scalability, modularization,
automated generation, and traceability to external artefacts
describing the AC context—is still reported [9][13][21].

Modularization is an effective way to cope with complexity
[22] because it makes it possible to partition an AC into
separate but interrelated modules. When dividing an AC into
modules and working on them separately, there is a need to
ensure the right context for each module. By context, we mean
the conditions under which a given AC argument is valid. The
argument module may not be applicable in a different context.
The context of each module needs to be explicitly defined in
order to ensure the module makes a valid composition with
other modules and that it is correctly reused. This is especially
crucial for product lines, as many similar (but not exactly the
same) components are used and a proper AC argument has to
be provided for each version of each component. The
information that defines the context is managed in various
supporting tools and it becomes essential to enable a simple,
universal approach to automated data transfer between such
tools.

We aim to provide a solution with the potential to address
such concerns. To achieve this, in this paper, we identify the
key factors that condition the high-level AC structure, explain
how they can drive its decomposition into AC modules, and
outline the process of creating and using context models. A
main idea we introduce is the System Assurance Reference
Model (SARM), which bridges the gap between ACs and the
related context models. In this paper, we present:

1. A concept of a unified context model which covers the
complete AC context: the object (system, component),
the assurance goals and the operational conditions. The
idea is not to develop the context models from scratch
but to integrate with the existing data which describes
the context relevant to the AC process.

2. The reference model which connects ACs with their
context models on two levels: AC templates (reusable
argument structures) with the abstract context model,
and AC arguments with the concrete context model
specific for a given system. The reference model
supports modular ACs and enables two-way
traceability.

3. A grammar for parameters and conditions in AC
templates to control the references to the argument
context in the template instantiation process.

4. The idea of context tree diagrams for the compact
presentation of context dependencies in AC templates.

5. The algorithm of modular AC generation from
modular templates with the use of context models.

6. Demonstration of the approach with the use of a
prototype tool which implements argument generation.

The remainder of this paper is organized as follows. In
Section II, we describe the background and in Section III, we
outline the main related work. Section IV introduces the

concept of SARM and is followed by Section V, which
provides more details about SARM logical design. In Section
VI, we present an illustrative example of SARM application.
The paper is concluded in Section VII.

II. BACKGROUND

A. Goal Structuring Notation

GSN (Goal Structuring Notation) [7] is the most popular
notation for ACs and it will be used in this paper. Fig. 1. lists
selected elements of GSN (the ones that will be used in the
remainder of this paper).

Selected GSN elements

 Goal Solution

 Strategy Context

 Justification Assumption

 Module

GSN relationships

 SupportedBy InContextOf

Fig. 1. Core GSN notation summary.

GSN assurance cases include Goals which express claims
about system properties. Strategies are used to explain the
argument step including a given Goal and its supporting
elements. A Justification provides a rationale that the reasoning
defined by a given Strategy is valid and complete. An
Assumption is a statement that is not argued nor demonstrated
by evidence, but simply treated as true. A Solution represents
an evidence item. A Context represents the contextual
information for which the AC is valid. The reasoning and
evidence support is indicated by the SupportedBy relationship,
while the InContextOf relationship links additional elements
such as Context, Justification and Assumption. The elements
and relationships defined in GSN make it possible to develop
complex argument structures.

B. Methodological foundations

Several methodological solutions have been proposed for
ACs to cope with their complexity, to limit the impact of
changes and to reduce the work effort necessary for AC
development and maintenance:

 Modules and contracts [22]-[24]: ACs can be
partitioned into separate but interrelated modules. A
module can be, e.g., dedicated to a particular
component of the system or aimed at justifying a
specific claim. The interrelationships between modules
can be captured in contract modules. A contract
module is placed between AC modules to ensure that
one module provides valid support in the full context
required by another module. The context of each AC
module should be defined explicitly to use contract
modules effectively. The correct management of the
context of AC modules helps in effective argument
encapsulation to make the AC architecture less prone
to changes. It makes it feasible to change or replace

`

AC modules while maintaining the same context and
without the need to change other modules.

 Patterns [25]-[27]: An AC pattern is an abstract
reusable argumentation structure that captures a
repeatedly used successful argument. As such, AC
patterns are analogical to the design patterns known
from the software engineering domain. A pattern
includes parameters (e.g. the name of the mitigated
hazard). Such parameters need to be assigned concrete
values in order to use the pattern in a particular AC—
this process is called pattern instantiation. Patterns can
capture argumentation structures of different size and
complexity, however, they are usually of a local
nature, i.e. to be applied at a given step of argument
decomposition.

 Templates [28]-[30]: An AC template is a partially
complete AC structure that can be determined
beforehand for the specific system under consideration.
For example, it can capture the requirements of a given
standard or provide the structure of an argument
commonly used for a given class of systems. A
concrete AC can be constructed based on a template by
extending the template with concrete evidence and
possibly with more specific argumentation. The real
difference between a template and a pattern is one of
completeness—a template is a complete AC, in which
claims are specialized for the specific situation [29].
Similarly to patterns, templates can include parameters
to be instantiated when constructing a concrete AC.

The effective use of such solutions is dependent on the
availability of appropriate tools which support modularization,
automated pattern instantiation (and maintenance), consistency
control, change management and traceability. This can be
achieved through integration with other tools used in the
system life cycle to use available information relevant for ACs.
The approach where ACs are constructed and maintained in a
tool-supported, automated manner on the basis of information
included in external artefacts (usually models) is called Model-
Based Assurance Case (MBAC) and is one of the most
promising directions in the AC domain [31].

III. RELATED WORK

Solutions enabling the automation of AC development and
maintenance are a relatively recent achievement. The research
in this domain includes the following areas:

 Context models and traceability mechanisms between
AC fragments and external artefacts and their consisting
elements;

 Automated development and/or maintenance of ACs
through generation or update of their fragments based
on external models (for example, a hazard model or a
threat model).

 Coexistence of automatically generated and manually
managed arguments.

ACs dedicated to the safety properties of a system are
strongly dependent on hazard analysis uncovering the
dangerous situations that could lead to accidents. As a result, a
number of approaches aimed at partial generation of AC
fragments dedicated to hazard mitigation have been proposed,
e.g. [32]-[34].

Other essential artefacts guiding AC development include
various system models (describing the considered system).
Architecture Analysis & Design Language (AADL) models
developed in tools such as OSATE [35] or AutoFocus [36][37],
as well as multiple other models [38], were used as a basis for
automated generation. Also, architectural design patterns
expressed in Unified Modeling Language (UML) can drive AC
fragment generation [39].

Apart from the arguments related to the considered system
itself, AC often also covers so-called process aspects, i.e.
argues that the process of system development follows the
requirements of standards and/or good practices. Thus,
attempts have been made to model the development process
and to use such models to generate the corresponding
fragments of ACs [40]-[42]. Other possible artefacts driving
automation include safety contracts between system
components [14][43] and the results of formal code analysis
provided by another tool [44].

The individual artefacts and information sources mentioned
above can also be combined to provide a more comprehensive
basis for AC generation. A quite widely explored path covers
the combination of system architecture and information about
hazards and/or safety requirements [45]-[48]. Another
possibility is the use of both system and process models to
include product-based as well as process-based aspects in an
AC [49]. A more generic approach, where an AC can be
designed using an artefact tree consisting of various external
artefacts and definitions of relations between them is also
possible [50]. A proposal dedicated to ACs for machine
learning models, using Operational Design Domain (ODD)
models and training datasets as artifacts driving automation,
can be found in [51].

Despite the availability of methodological approaches and
tools, the foundations of MBAC, such as a formal or semi-
formal definition of parameters or an algorithm responsible for
the instantiation process, are rarely described in detail.
Formalized definitions of AC patterns and their parameters are
presented in [45][52][53]. Less formal ones, based on the
Structured Assurance Case Metamodel (SACM) metamodel
[31] or Extensible Markup Language (XML) [47][48], can also
be found. The algorithms defining the instantiation process are
published (as pseudocode or an algorithm based on formal
definitions) in [26][38][40][43][46][53].

Our proposal differs from the related works presented
above by the following distinguishing features:

 The other works focus on system models, goals
(requirements or addressed hazards) or a combination
of both. The environment, including different
operational situations/modes as well as environmental
conditions, is however not explicitly covered, while

`

such aspects may be crucial for many systems [54]. At
the same time, the importance of the context is
increasingly recognized—for example, the concept of
Operational Design Domain (ODD) was identified and
included in recent standards for autonomous driving in
automotive [55][56]. Only [51] deals with ODD, but
for a very specific use case of arguing the safety of
machine learning models applied to automated driving
systems. Our approach is therefore a more general one,
allowing the system to describe various elements of
context in a uniform way and to include a broader
scope of external artefacts.

 The existing proposals, except [14], aim at generating
particular AC fragments dedicated to, e.g., a given
hazard, requirement or system component. We focus in
this paper on high-level AC decomposition into
modules and providing initial templates for each
module to enable its further development.

IV. CONCEPT OF SYSTEM ASSURANCE REFERENCE MODEL

Our goal is to manage the AC context in an explicit and
systematic way with the use of a general context model. As we
could not find any solution that was ready to use, we decided to
develop a System Assurance Reference Model (SARM) to
address the problem. Our main goals and requirements for the
models and the process of their use can be summarized as
follows:

 The solution should provide a uniform way to manage
references to any type of context models relevant to
ACs. It cannot be limited to a specific subset of models
with respect to their purpose or type (e.g. system
models, hazard models, requirements models, process
models).

 The models should operate at two levels: the abstract
level of argument templates, which are applicable to
specific types and classes of systems, and the concrete
level of argument modules for specific systems and
devices.

 Traceability in both ways should be provided between
the abstract and concrete levels of the model. The
solution should be capable of answering questions such
as which AC modules apply for a specific device.

 The solution should support reuse to the greatest extent
possible with regard to both ACs (e.g. an AC template
that can be instantiated for different systems or
components) and context models (e.g. a given model is
referenced in different parts of an AC).

 Scalability has to be provided. The number and size of
the context models (e.g. for product lines and/or
systems built from a large number of separate, out-of-
context components) can be substantial, but that cannot
limit the application of the intended solution.

 The approach should support the evolution of all
models and maintain consistency. No restrictions of
independent changes in context models can be

accepted. Also, argument templates may evolve and be
modified. The approach should support the evolution
process, provide for traceability of all changes and
control the consistency of all interrelated models.

 The approach should allow the use of any data format
for source context models. When necessary, a method
of model transformation should be provided.

Our further considerations will be based on the following
definition of an AC, which is a slightly modified variant of
existing definitions (e.g. [7]). In the definition, we have
highlighted the sections relevant to our goals.

An assurance case provides confidence that the described
system (object of the argument) guarantees satisfaction of the
assurance requirements under the assumptions of the specified
context of use.

AC top claims are usually defined with three main types of
context information: (1) the system (the object of the
argument), (2) assurance goals (e.g. safety requirement,
assigned Safety Integrity Level, regulations to comply with)
and (3) the environment and conditions of use (e.g. flight
phase, weather conditions). Each AC argument can be
understood as a statement and justification of some guarantees
(assurance goals), provided that some assumptions (context of
use) are satisfied. For example, a medical device is safe in
operation, provided that it is used by trained clinicians in an
intensive care hospital environment.

Each type of context information may be used for AC
decomposition into modules. A user may decide to decompose
an AC into modules according to assurance goals, such as
safety, security and conformance to specific standards. Another
approach is to develop AC modules for a system, its
subsystems and components.

The model describing the system conditions of use can also
be used in the argument decomposition. Separate argument
modules or branches can be developed for different conditions
of use, e.g., military and civilian missions, vehicle operation in
populated or unpopulated areas, or in summer and winter
conditions.

Context models for ACs usually cover system architecture,
the risk model and assurance goals, the environment and
conditions of use. From the perspective of a person responsible
for AC development there is a need for a generic and uniform
way of referring to the context elements in the argument.

We assume that each element of the context model can be
referred to with an URL address. On the AC side we use the
tool that provides unique URL address for each argument
module and element. This will enable tracing dependencies in
both directions.

It is important to emphasize that our objective is not to
propose any new context models or a new notation to express
them, but to track the relations to the models used in industrial
practice in order to manage ACs in a more efficient way.

Our proposed solution is called SARM (System Assurance
Reference Model). The main components of SARM are shown

`

in Fig. 2. The arrows in the diagram indicate that the given
component is based on another one. An arrow from A to B
means that B is defined using elements (terms) from A. In
practice, it is implemented with references (links) from
elements of B to elements of A.

Fig. 2. Main components of SARM.

Abstract Context Model (ACM) defines the terms of the
context model to be used in the AC templates and,
consequently, in the AC arguments. The terms have to cover
the object-conditions-goals triad mentioned earlier. It is not our
intent to create a complete model covering the needs of any AC
application, therefore, the terms defined in such a model will
differ for different applications. For example, the context
model can include a system’s physical or functional
architecture. As for assurance goals, the context of a safety
case can include the risk model: the terms of hazards, their
causes and safety requirements, while a security case would be
based on terms such as threats, vulnerabilities, etc.

Assurance Case Template (ACT) is an argument template
(the explanation of AC templates is provided in Section II),
which refers to the terms defined in a specific ACM. For
example, a template for arguing a system’s safety by
addressing hazards with safety functions assigned to particular
subsystems would require references to the terms “system”,
“subsystem”, “hazard” and “safety function” defined in the
corresponding ACM. The template can be divided into a set of
modules. An example is presented in Fig. 3.

System Context Model (SCM) describes the context for a
particular system including information about the assurance
goals and conditions of use. The model should use the terms
defined in the ACM. For example, the architectural
decomposition of a considered system into subsystems can be
described using the model of system decomposition into
subsystems: the Autonomous Vessel X (system) is composed
of the Situation Awareness (subsystem) and the Control
Execution (subsystem).

Assurance Case Argument (ACA) is based on a template
(ACT) and on a system context model (SCM). The argument
(ACA) is a result of the templates’ (ACT) instantiation using
the context information (SCM). The SCM is used to fill the
ACA with specific content, including, e.g., the names of the
subsystems, safety functions implemented by them, hazards
addressed by those safety functions, etc. When the template is

divided into modules, the instantiated AC architecture will
follow the same decomposition.

The SARM model is accompanied by the process of its
development and maintenance. The process is outlined in
Fig. 4 and consists of the steps explained as follows.

Fig. 3. Example of a hierarchy of AC modules.

A. Step 1

Step 1 is dedicated to the abstract models that provide the
basis for the models created in the subsequent steps. The
objectives of Step 1 are to: (1) Develop an ACM, which should
define the terms relevant to ACs for a given domain and
objective (e.g. class of systems, conformance to a specific
standard); (2) Develop an ACT (i.e. a template) using the terms
defined and included in the ACM. We describe these activities
together because we consider them to be closely related. Even
though the ACM is a more “basic” model, its contents can be
influenced by the needs identified during the template
development. When a new term to describe argument modules
or branches in the template is needed, it is necessary to revert
to the ACM definition and to extend the ACM with the
required properties. We recommend the strategy of defining the
minimum required scope of the ACM. The context models
should be kept as simple as possible and contain only the
information needed in the ACs. Usually, this will be a small
subset of the complex models used in system development.

B. Step 2

In this step, an SCM is created to describe a specific
system. It defines a set of objects being the instances of classes
defined in the ACM. Each element of the system context
should be described as an object following the abstract context
model (ACM). The system description should provide a
complete set of information for the template instantiation.

C. Step 3

The goal of this step is to develop an assurance case
argument (ACA). This step consists of both automated and
manual parts. The automated action is the generation of the
ACA based on the template (ACT) with the use of context
information (SCM). This is the first action, as it creates the AC
modules that can then be supplemented by manual actions.

The manual part is the development of low-level argument
sections and providing the evidence. The manual part should
not interfere with the automatically generated argument parts
to maintain the consistency with the context models.

In this paper, we mainly focus on the automatic generation
of modular arguments. The aspects of coexisting automatic and
manual argument development and maintenance are beyond

`

the scope of this paper and are not discussed in detail. Our
basic approach is that the users should extend the generated
arguments, but not modify the automatically generated content.

D. Step 4

Step 4 covers the maintenance of the assurance case
argument (ACA). This includes changes in any of the other AC
modules. There are generally two main types of model
changes. The first and the most common type is the change in
the system context. The system architecture can be modified,
or its goals may be refined, or the conditions of use may

evolve. Any of these changes (in the SCM) may require an
update of the argument (ACA). The second type is the changes
in the templates. Sometimes they may also imply changes to
the context model ACM. In some cases, they may also require
extending the system description in the SCM.

The evolution of SARM models should ensure the
consistency is maintained between the related models. We are
aware of the importance of this step, however, we will not
address maintenance issues in this paper.

Fig. 4. Process of SARM definition and use.

V. SARM LOGICAL DESIGN

In this section, we will describe the models used to
implement the concept introduced in Section IV and present
the algorithm for automatic AC generation based on the
templates (ACT) and system context model (SCM).

We designed a SARM as an extension of the argument
model we used in the NOR-STA tool [57]. As we represent the
perspective of NOR-STA’s manufacturer and provider, we
intend to implement the SARM as part of this tool, but
currently, we are still exploring prototype solutions. Our goal is
to keep the model used to perform the process described in the
previous section as simple as possible. There is no decision yet
whether the model should be based on the SACM metamodel
[58]. The Artifact Metamodel would probably be useful to
define the context information for the ACs, but at this stage of
our work, we have not decided yet.

The SARM model consists of four parts and we will
discuss them in the order they were developed.

A. Abstract Context Model (ACM)

The purpose of the ACM is to be referred to in the ACT,
and this model should be developed first. The ACM model
should make it possible to define any context models relevant
to the ACs, so we will keep it as generic as possible. One could
say that this should be a simple ontology. We followed this

direction and defined two classes to allow the declaration of
context objects and their properties.

Fig. 5. Class diagram of System Assurance Reference Model (SARM).

`

The first one is used to define classes of objects (its name is
Class, with a capital “C” in its name). The second class defines
the Attributes. An Attribute can refer to any Class defined in
the ACM or to a predefined Class which implements a basic
data type such as “integer” or “string”. When the type of an
Attribute is another Class defined in the model, we allow
multiple values, i.e. a list of objects can be used as the value in
the model implementation.

The ACM model consists of two classes only, but it is quite
powerful and makes it possible to define any context objects
and the relations between them. The model is presented in the
lower left part of the diagram in Fig. 5.

B. Assurance Case Template (ACT)

We understand an argument template to be an abstract
argument structure which contains a top claim and an almost
complete argument. The result of a template instantiation is an
argument module which may not be complete, in particular the
appropriate evidence for the module context is still missing and
should be provided.

The templates will refer to the ACM and we will use two
types of references, which correspond to the two forms of
abstraction defined in section 2:8.1 of the GSN Community
Standard version 3 [7]. The parameters and conditions
described below are our extension of GSN patterns, introduced
for the purpose of formalization of model references:

 Parameters are used to specify references in argument
templates. This implements the element abstraction
defined in the GSN Standard. An example is the
parameter “{Component C}” presented in Fig. 6.
Parameters are used in ACT elements to indicate the
need for their instantiation for each specified context
entity. Parameters can also include dependencies. The
parameter “{Contract K | C.contracts}” says that the
element of the template should be instantiated for
every contract K of the given component C.

 Conditions are used to manage conditional branches
of the argument. This corresponds to the structural
abstraction in the GSN Standard. Attributes of the
context objects can be used to define conditions. For
example (see Fig. 6), the argument branch with the
condition “[C.subcomponents]” will be implemented
only when component C has some subcomponents.
The other argument branch will have a condition with
an exclamation mark to denote negation—
“[! C.subcomponents]”. This template element will be
instantiated only when component C does not have any
subcomponents.

The described mechanism of conditions in the SARM
differs from the structural abstraction defined in the GSN. The
GSN choice element (section 1:3.2.3 in [7]) makes it possible
to define the relation ‘N of M’ for a group of argument
elements. The problem with the automatic argument generation
is that the criteria under which N elements out of M should be
selected is not clearly defined. Instead of the ‘N of M’ choice
operator, we propose precise definitions of the conditions
specific to each template element.

Fig. 6. Claims in AC template with parameters and conditions.

The parameters and conditions are presented in the
template elements in brackets and they follow the syntax:

Parameter := <class> <object> [<object>.<attribute>]

Condition := [<negation>] <object>.<attribute> [<operator> <value>]

The (simplified) ACT model is presented in the upper left
part of the SARM diagram (Fig. 5). It contains classes to
describe the parameters and conditions as an extension of the
template argument model. This is presented with the
TemplateElement class, and we do not present any other
classes used in the ACT. In particular, the relations between
the template elements and interfaces are not presented in the
model.

The context objects set for a specific argument element are
inherited to all its child elements. To avoid potential conflicts
of the context objects, we assume that the template has a tree
structure. This assumption is implemented with the parentId
attribute in the TemplateArgument class.

C. System Context Model (SCM)

SCM describes a concrete context model which is to be
used for a specific AC. It is shown in the lower right part of the
SARM diagram (Fig. 5). The model includes instances of
ACM classes that describe a concrete system, its goals, and
conditions of use. The method of creating SCM objects
depends on the system design process and the tools used. If
some modeling methods are used for a system (UML, AADL,
etc.), an SCM could possibly be extracted from these models.
Another source of the model data can be the Operational
Design Domain (ODD). Finally, some context data cannot be
formalized and may require a dedicated solution.

Regardless of the method of development of the SCM, it
should be consistent with the abstract model (ACM). If there
are difficulties defining the SCM based on the existing model
structure, a return to the first step should take place (to extend
the ACM with the required new classes or attributes).

The relationship between the abstract and concrete model
for a specific system is illustrated in Fig. 7. All entities in the
SCM should refer to their ACM counterparts.

`

Fig. 7. Relations between objects of the system (on the right) and the abstract

(on the left) context model.

D. Assurance Case Argument (ACA)

The argument (ACA) modules are to be generated from the
ACTs based on the context model (SCM). They should
maintain relations to both the ACT and SCM. This model is
presented in the upper right part of the SARM diagram (Fig. 5).
The class ArgumentElement denotes the base argument
element (Goal, Strategy, etc.) and further details of it are not
presented. The relation to the SCM is an extension of the base
model specific for the SARM.

The ACA is a model of modular arguments that is to be
generated from other models. We have developed an algorithm
to generate the arguments, which is presented in Fig. 8. The
argument generation is performed in three steps (described in
the algorithm).

1. Identification of all possible modules for the provided
templates and the system models.

2. Generation of argument bodies for each module.

3. Connecting the argument modules with interfaces

VI. ILLUSTRATIVE EXAMPLE

Generating modular ACs using SARM models will be
demonstrated using an illustrative example with a small system
consisting of four components. The example will involve the
use of a modular template which contains references to the
SCM.

In the example, we will use our prototype SARMER tool.
The tool supports generating modular arguments according to
the algorithm presented in Section V using SARM models. The
JavaScript Object Notation (JSON) data format is used for all
models to provide easy integration with other tools. The input
data consists of abstract and system context models (ACM and
SCM), and an assurance case template (ACT). The tool
performs an analysis of the input models and produces the
model of a modular assurance case argument (ACA) in JSON
format. Additionally, in the last step, SARMER produces an
XML file to import the generated modular ACA into
NOR-STA.

GenerateACA(ACM, ACT, SCM)
 Create argument modules
 Generate bodies of argument modules
 Bind modules with interfaces

Step 1. Create argument modules
 For each template
 get the top claim and its context parameters
 find all possible objects which satisfy the context requirements
 for each possible set of objects
 create an argument module

add top claim and set its context objects

Step 2. Generate bodies of argument modules
 For each argument module
 get the top claim and its context
 ExpandElement(top-claim)

 Procedure ExpandElement(element)
 find a corresponding templateElement for the element
 if templateElement has no children
 then return
 for each child of templateElement
 CreateChildren(element, child)

 Procedure CreateChildren(element, templateElement)
 if templateElement contains a condition
 if condition is not satisfied
 then return
 if templateElement does not contain any parameter
 or there are no new parameters
 then create element from templateElement under element
 with the same context inherited
 ExpandElement (createdElement)
 return
 identify new parameters in the templateElement
 search objects for the new parameter(s) in the current context
 for each new object found
 create new context = the current context and the new object
 create element from templateElement under element
 with the new context
 ExpandElement (createdElement)

Step 3. Bind modules with interfaces
 For each argument module
 for each element E in the module with a required interface
 find a corresponding templateElement
 read the interface of the templateElement
 find a supporting template
 for each argument module A based on the supporting template
 if E.context is the same as the context of the top claim in A
 bind E to the top claim in A

Fig. 8. Algorithm description.

The prototype tool has some limitations, including a
simplified user interface and error reporting. Another
simplification concerns the types of conditions implemented in
the templates. Currently, the only implemented conditions are
the checks if a given attribute value is null or not. The tool
implements AC generation, but the functions to update the
arguments when the context models change have not been
implemented yet.

`

We have selected a simple component-based system for our
example. The goal of the argument will be to demonstrate that
a given component satisfies its assurance-guarantee (AG)
contract. The first sample system we analyze is described in
[14]. This is the Csys component, which is composed of three
subcomponents: C1, C2 and C3. Assurance-guarantee (AG)
contracts are used to describe the behavior of each component.
The structure of the system is presented in Fig. 9. Symbols A
and G denote the assumptions and guarantees of specific
components. The arrows with k labels present contracts. An
assume-guarantee contract is a property, meaning that a given
component ensures that if the assumptions A are satisfied, the
guarantees G are also satisfied. A simple example is a contract
for a lamp: the assumptions are “the switch is in the on
position” and “power is on”, and the guarantee is “the lamp is
lit”. Some contracts are relevant for safety and ACs are
developed to demonstrate that the component correctly
implements the assigned contracts.

Demonstrating that the components satisfy their contracts is
not sufficient. A composition of contracts of components
should follow specific rules. For example, it should be
demonstrated that a guarantee of one component is sufficient to
satisfy an assumption of another component. These relations
are called refinements. They are denoted with r labels in the
diagram in Fig. 9. For more information on how AG contracts
work and for sample system details, please refer to [14].

Fig. 9. System model used in the example.

The design of a composite component is considered correct
when its contract is implemented with a continuous sequence
of refinements and contracts of subcomponents. Contract k1 of
component Csys in Fig. 9 is implemented by the sequence
(((((r2, k3), (r1, k2)), r3, k5), (r1, k4)), r4). The implementation
of k1 is complete and there are no redundant relations.

The example will be presented in three steps according to
steps 1–3 of the process described in Section IV. The first step
is to define the ACM and ACT. While it is possible to develop
large and complex ACMs, our recommendation is to develop
the general ACT structure first and then see what references
are needed in it. The ACM should fit into the scope of the
information needed for the ACT.

We used the NOR-STA tool to develop the AC templates
(one is presented in Fig. 10) based on the schema described in
[14]:

‒ For a composite component, we need to demonstrate that:

‒ the component composition is correct, and

‒ every refinement in a given component is satisfied, and

‒ every subcomponent satisfies its contracts.

‒ For a primary component we need to demonstrate that:

‒ every allocated contract is satisfied.

Fig. 10. Assurance case template for a component.

The main concepts that we need to define in the ACM are:
a component, a contract and a refinement. We will also need
references to assumptions and guarantees in the template for a
contract argument. Assumptions and guarantees are defined as
specifications. Each specification has a ‘type’ attribute to
indicate if it is an assumption or a guarantee. The ACM is
presented in Fig. 11. It will be used for references in the ACT.

Fig. 11. Abstract context model (ACM) for component-based architecture.

In our example, we use the JSON format to represent the
model. This data format is quite easy for humans to operate.
We prepared the data for this example manually, but it is
planned to be automated in the further phases of our work. In
Fig. 12, we present a simplified fragment of the JSON file we
used. We removed some parts from the JSON sample (e.g.
identifiers) to make the code sample smaller for this paper. It
presents the two main classes used in the ACM.

 A Contract class with two attributes: an assumption
and a guarantee.

 A Component class, where a component can contain
subcomponents (objects of class Component) and
contracts (objects of class Contract).

`

Fig. 12. Excerpt of ACM definition in JSON format.

The ACM is referred to from the ACT. The ACT contains
three modules, one of which is presented in Fig. 10. The
templates include parameters and conditions referring to the
classes defined in the ACM. The data describing the
parameters and conditions in the template can be extracted and
presented in the form of a context tree, as presented in Fig. 13.
A context tree presents a clear view of the complete argument
context at an abstract level. Finding all dependencies in larger
arguments takes time and this type of diagram speeds up this
process. We find this diagram to be useful for tracking
argument dependencies.

The two abstract models—for the context references
(ACM) and for the template (ACT)—are now complete. The
next steps are performed for a specific system. The system we
analyze is presented in Fig. 9 at the beginning of this section.

The SCM is developed using the JSON format. The model
includes objects of classes defined in the ACM. This is quite a
simple process, but we had to make one correction to the
system structure presented in Fig. 9. The component C1 has a
guarantee G2 and no contract inside it. The argument template
requires a component to have contracts or subcomponents and
C1 does not satisfy this requirement. We extended the system
model with an additional contract, k6, with a null assumption
and the guarantee G2.

Fig. 13. Context tree of the ACT for a component.

The completed models provide sufficient data to generate
the ACA for the specified system using the specified templates.
This ACT consists of three modules and the result of argument
generation is a set of interconnected argument modules of three
types: for components, contracts and refinements. The modular
AC presented in Fig. 14 consists of 14 modules: four modules
for components, six modules for contracts (including the k6
contract described above) and four refinement relations.

The SARMER tool produces a single XML output file

which defines the generated AC modules. The file can be

manually imported into the NOR-STA tool. It is planned to

automate this step using the NOR-STA API interface in the

future. Diagrams like in Fig. 14 can be generated in NOR-STA

when the ACA model is imported into the tool.

Fig. 14. Modular diagram of the generated assurance case.

VII. CONCLUSIONS AND FUTURE WORK

Automation is practically a necessity for the management

of large-scale ACs. We have presented a generic approach of

AC architecture management based on context models. This

reduces the need to manually develop large parts of AC

arguments and it is expected that it will reduce the number of

mistakes and problems with the arguments’ correctness.

The System Assurance Reference Model (SARM), used to

control the assurance case generation, can cover a broad scope

of information including system architecture, assurance goals,

risk models, environment and system life cycle activities. The

reference model can be used at both levels of the abstraction:

templates and concrete arguments. The reference model

enables traceability of relations in both directions, to and from

the context model. We have presented the logical design of the

reference model and the algorithm for modular AC generation.

This was implemented with the prototype SARMER tool and

demonstrated in an illustrative example of a modular AC for a

simple component-based architecture.

We plan to conduct several more thorough industry case

studies in order to verify whether the SARM model is

complete and efficient in use for large systems and product

lines. The case studies will also help in identifying the need to

extend the parameter and condition mechanisms for assurance

case templates.

The technology used in the SARMER tool provides easy

extension and integration with other systems. Our intention is

to continue further development and extension of the tool to

enable AC maintenance, provide an easy-to-use mechanism of

model change management and automate data between

different tools integrated in the system assurance process.

Later, we plan to incorporate such functionality into the

NOR-STA tool.

{ "classes": [{

 "name": "contract",

 "attributes": [

 { "name": "assumption", "type": "specification" },

 { "name": "guarantee", "type": "specification" }]

 }, {

 "name": "component",

 "attributes": [

 { "name": "subcomponents", "type": "component" },

 { "name": "contracts", "type": "contract" },

 ...

`

REFERENCES

[1] International Organization for Standardization (ISO), “ISO 26262:2018
Road Vehicles - Functional Safety”, 2018.

[2] International Organization for Standardization (ISO), “ISO/SAE
21434:2021 Road vehicles — Cybersecurity engineering”, 2021.

[3] European Committee for Electrotechnical Standardization, “Railway
applications - communication, signaling and processing systems - safety
related electronic systems for signaling”, 2018.

[4] Civil Aviation Authority, “CAP 670: Air Traffic Services Safety
Requirements”, The Third Issue, Amendment 1/2019, 2019.

[5] Underwriters Laboratories, “UL4600 - Standard for the Evaluation of
Autonomous Products”, 2022.

[6] U.S. Food and Drug Administration, “Infusion Pumps Total Product
Life Cycle Guidance for Industry and FDA Staff”, 2014.

[7] The Assurance Case Working Group, “Goal Structuring Notation
Community Standard Version 3”, 2021.

[8] C. B. Weinstock, J. B. Goodenough and J. J. Hudak, “Dependability
Cases”, CMU/SEI-2004-TN Technical Report, Software Engineering
Institute, 2004.

[9] J. Cheng, M. Goodrum, R. Metoyer and J. Cleland-Huang, “How Do
Practitioners Perceive Assurance Cases in Safety-Critical Software
Systems?” In IEEE/ACM 11th International Workshop on Cooperative
and Human Aspects of Software Engineering (CHASE), pp. 57-60,
IEEE, 2018.

[10] T. Myklebust, G. K. Hanssen and N. Lyngby, “A survey of the software
and safety case development practice in the railway signalling sector”
ESREL Portoroz, Slovenia, 2017.

[11] C. Almendra, C. Silva, L. Martins and J. Marques, “How assurance case
development and requirements engineering interplay: a study with
practitioners”, Requirements Engineering, 27(2), pp. 273-292, 2022.

[12] Y. Zhang, B. Larson and J. Hatcliff, “Assurance case considerations for
interoperable medical systems”, In ASSURE 2018, International
Conference on Computer Safety, Reliability, and Security, pp. 42-48,
Springer, Cham, 2018.

[13] F. Warg, H. Blom, H., J. Borg and R. Johansson, “Continuous
deployment for dependable systems with continuous assurance cases” In
2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp. 318-325, IEEE, 2019.

[14] D. Nešić, M. Nyberg, M. and B. Gallina, “Product-line assurance cases
from contract-based design”, Journal of Systems and Software, 176,
110922, 2021.

[15] P. Graydon, J. Knight and E. Strunk, “Assurance based development of
critical systems”, In 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN'07), pp. 347-357, 2007.

[16] T. Myklebust and T. Stålhane, “The agile safety case”, pp. 1-213,
Berlin: Springer, 2018.

[17] A. Salameh and O. Jaradat, “A safety-centric change management
framework by tailoring agile and V-model processes”, In 36th
International System Safety Conference ISSC 2018, Phoenix, United
States, 2018.

[18] R. Johansson and P. Koopman, “Continuous Learning Approach to
Safety Engineering”, In CARS-Critical Automotive applications:
Robustness & Safety, 2022.

[19] M. Maksimov, N. Fung, S. Kokaly and M. Chechik, “Two decades of
assurance case tools: a survey”, In ASSURE 2018, International
Conference on Computer Safety, Reliability, and Security, pp. 49-59,
Springer, Cham, 2018.

[20] E. Denney and G. Pai, “Tool support for assurance case development”
Automated Software Engineering, Vol. 25, No. 3, pp. 1-65, 2017.

[21] M. Zeller, „Towards Continuous Safety Assessment in Context of
DevOps”, In International Conference on Computer Safety, Reliability,
and Security, pp. 145-157, Springer, Cham, 2021.

[22] T. Kelly, “Using Software Architecture Techniques to Support the
Modular Certification of Safety-Critical Systems”, in Proceedings of
Eleventh Australian Workshop on Safety-Critical Systems and Software,
Melbourne, Australia, 2006.

[23] J. Fenn, R. Hawkins, T. Kelly and P. Williams, “Safety Case
Composition Using Contracts – Refinements Based on Feedback from
an Industrial Case Study”, 15th Safety Critical Systems Symposium,
2007.

[24] O. Jaradat, I. Bate and S. Punnekkat, “Facilitating the maintenance of
safety cases”, In 3rd International Conference on Reliability, Safety and
Hazard - Advances in Reliability, Maintenance and Safety, pp. 349–371,
Springer, 2015.

[25] T. Kelly and J. McDermid, “Safety case patterns – reusing successful
arguments”, Proceedings of IEE Colloquium on Understanding Patterns
and Their Application to System Engineering, London, UK, 1998.

[26] E. Denney and G. Pai, “Safety Case Patterns: Theory and Applications”,
NASA/TM–2015–218492 Technical Report, 2015.

[27] M. Szczygielska and A. Jarzębowicz, “Assurance Case Patterns On-line
Catalogue” In: Advances in Dependability Engineering of Complex
Systems (DepCoS-RELCOMEX 2017), Advances in Intelligent Systems
and Computing vol. 582, pp. 407-417, Springer, Cham, 2017.

[28] L. Cyra and J. Górski, „SCF—A framework supporting achieving and
assessing conformity with standards”, Computer Standards & Interfaces,
33(1), pp. 80-95, 2011.

[29] A. Wassyng, P. Joannou, M. Lawford, T. S. Maibaum, and N. K. Singh,
“New Standards for Trustworthy Cyber-Physical Systems”, in
Trustworthy Cyber-Physical Systems Engineering. CRC Press, pp. 337–
368, 2016.

[30] R. Bloomfield, G. Fletcher, H. Khlaaf, L. Hinde and P. Ryan, “Safety
case templates for autonomous systems”, arXiv preprint
arXiv:2102.02625, 2021.

[31] R. Wei, T. Kelly, X. Dai, S. Zhao and R. Hawkins, “Model based
system assurance using the structured assurance case metamodel”,
Journal of Systems and Software, 154, pp. 211-233, 2019.

[32] E. Denney and G. Pai, “A lightweight methodology for safety case
assembly”, In 31st International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2012), pp. 1-12, Springer Berlin
Heidelberg, 2012.

[33] A. Wardziński and A. Jarzębowicz, “Towards Safety Case Integration
with Hazard Analysis for Medical Devices”, In Proc. of 4th International
Workshop on Assurance Cases for Software-intensive Systems
(ASSURE 2016), LNCS 9923, pp. 87-98, 2016.

[34] E. Denney and G. Pai, “Architecting a Safety Case for UAS Flight
Operations”, Proceedings of 34th International System Safety
Conference (ISSC 2016), 2016.

[35] A. Gacek, J. Backes, D. Cofer, K. Slind and M. Whalen, “Resolute: an
assurance case language for architecture models” In ACM SIGAda Ada
Letters Vol. 34, No. 3, pp. 19-28, 2014.

[36] M. Khalil, B. Schätz and S. Voss, “A Pattern-based Approach towards
Modular Safety Analysis and Argumentation”. Embedded Real Time
Software and Systems Conference (ERTS 2014) – Toulouse, France,
February, 2014.

[37] Cârlan, C., Barner, S., Diewald, A., Tsalidis and S. Voss, “ExplicitCase:
integrated model-based development of system and safety cases”, In
International Conference on Computer Safety, Reliability, and Security,
pp. 52-63, Springer, Cham, 2017.

[38] S. Ramakrishna, H. Jin, A. Dubey and A. Ramamurthy, “Automating
Pattern Selection for Assurance Case Development for Cyber-Physical
Systems”, In Computer Safety, Reliability, and Security: 41st
International Conference, SAFECOMP 2022, pp. 82-96, Springer
International Publishing, 2022.

[39] I. Šljivo, G. J. Uriagereka, S. Puri and B. Gallina, “Guiding assurance of
architectural design patterns for critical applications”, Journal of
Systems Architecture, Volume 110, 101765, 2020.

[40] B. Gallina, “A model-driven safety certification method for process
compliance”, In 2014 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 204-209, 2014.

[41] R. Hawkins, T. Richardson and T. Kelly, “Using process models in
system assurance” In: International Conference on Computer Safety,
Reliability, and Security (SAFECOMP 2016), Springer International
Publishing, pp. 27-38, 2016.

`

[42] F. UL Muram, B. Gallina and L. Gómez Rodríguez, “Preventing
Omission of Key Evidence Fallacy in Process-Based Argumentations”,
2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), pp. 65-73, 2018.

[43] I. Sljivo, B. Gallina, J. Carlson and H. Hansson, “Generation of safety
case argument-fragments from safety contracts” In International
Conference on Computer Safety, Reliability, and Security (SAFECOMP
2014), pp. 170-185, 2014.

[44] N. Basir, E. Denney and B. Fischer, “Deriving safety cases for
hierarchical structure in model-based development”, Proc. of 29th
International Conference on Computer Safety, Reliability and Security
(SAFECOMP ‘10), Vienna, Austria, 2010.

[45] Y. Matsuno and K. Taguchi, “Parameterised argument structure for
GSN patterns”, In 11th International Conference on Quality Software
(QSIC), pp. 96-101, IEEE, 2011.

[46] R. Hawkins, I. Habli, D. Kolovos, R. Paige and T. Kelly, “Weaving an
Assurance Case from Design: A Model-Based Approach”, 2015 IEEE
16th International Symposium on High Assurance Systems Engineering
(HASE), 2015.

[47] A. Wardziński and P. Jones, “Uniform model interface for assurance
case integration with system models”, In: Proceedings of the 36th
International Conference on Computer Safety, Reliability, and Security
(SAFECOMP). vol. 10488, pp. 39–51, Springer, 2017.

[48] A. Retouniotis, Y. Papadopoulos, I. Sorokos, D. Parker, N. Matragkas
and S. Sharvia, “Model-connected safety cases”, In International
Symposium on Model-Based Safety and Assessment, pp. 50-63,
Springer, Cham, 2017.

[49] S. Alajrami, B. Gallina, I. Sljivo, A. Romanovsky and P. Isberg,
“Towards cloud-based enactment of safety-related processes”, In Proc.
of 35th International Conference on Computer Safety, Reliability, and
Security, pp. 309-321, 2016.

[50] A. Agrawal, S. Khoshmanesh, M. Vierhauser, M. Rahimi, J. Cleland-
Huang and R. Lutz, “Leveraging artifact trees to evolve and reuse safety
cases”, In IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 1222-1233, IEEE, 2019.

[51] C. Cârlan, L. Gauerhof, B. Gallina and S. Burton, “Automating Safety
Argument Change Impact Analysis for Machine Learning Components”,
In 27th Pacific Rim International Symposium on Dependable
Computing (PRDC 2022), pp. 43-53, IEEE, 2022.

[52] K. Attwood, T. Kelly and P. Conmy, “The use of controlled
vocabularies and structured expressions in the assurance of CPS”, Ada
User Journal, pp. 251-258, 2014.

[53] E. Denney and G. Pai, “A formal basis for safety case patterns”, In
Computer Safety, Reliability, and Security: 32nd International
Conference SAFECOMP 2013, pp. 21-32, Springer, 2013.

[54] P. Graydon, J. Knight and K. Wasson, “A flexible approach to
authorization of UAS software”, In: IEEE/AIAA 28th Digital Avionics
Systems Conference, pp. 5-C, 2009.

[55] SAE International, “SAE J3016: Levels of Driving Automation”,
version 3, 2020.

[56] International Organization for Standardization (ISO), “ISO/FDIS 34503
Road Vehicles — Test scenarios for automated driving systems —
Specification for operational design domain” (standard under
development).

[57] Argevide NOR-STA homepage, https://www.argevide.com/assurance-
case/

[58] Object Management Group, “Structured Assurance Case Metamodel”,
ver. 2.3, 2022, https://www.omg.org/spec/SACM/About-SACM/

