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Abstract— Assurance cases are structured arguments used to 

demonstrate specific system properties such as safety or security. 

They are used in many industrial sectors including automotive, 

aviation and medical devices. Larger assurance cases are usually 

divided into modules to manage the complexity and distribute the 

work. Each of the modules is developed to address specific goals 

allocated to the specific objects i.e. components of the system’s 

architecture. Such goals are applicable for given conditions of 

use, for instance, operational modes or target environments. It is 

recommended that the complete context of each of the argument 

modules, encompassing information about systems/components, 

goals and conditions of use, is described explicitly to enable 

efficient management and proper use of each module. This 

becomes even more important for component-based design, 

including the use of out-of-context components. In this paper, we 

describe a concept of a generic System Assurance Reference 

Model (SARM), which bridges the gap between assurance cases 

and the related context models. We identify the key factors that 

condition the high-level assurance case structure, explain how 

they can drive its decomposition into assurance case modules and 

outline the process of creating and using context models. We 

present a prototype solution which implements the SARM model 

and enables automatic data flow between models and assurance 

cases. 

Keywords—assurance case, safety case, argument templates, 

context models, contract-based design  

I. INTRODUCTION 

Assurances cases (ACs) are gaining increasing interest in 
industry, as their development and submission is required for 
high-assurance systems by a number of standards from several 
business domains, such as automotive [1][2], railway [3], 
aviation [4], autonomous systems [5] and medical devices [6]. 
An AC is a structured argument that justifies a claim about a 
specific property or properties of a considered system through 
an explicit chain of reasoning based on a body of evidence [7]. 
The top claim is supported by reasoning and the subclaims, 
which in turn need to be supported by further subclaims or 
evidence. The line of reasoning should be presented in an 
explicit way down to the level of supporting evidence. ACs are 
most commonly used to justify safety e.g. [1][3] (and as such 

are called safety assurance cases or simply safety cases), but 
other properties such as security [2] and dependability [8] are 
considered as well. 

Despite such growing interest, the current state of practice 
is reported to be coping with several problems [9]-[11]. For 
example, an interview study with AC practitioners focused on 
challenges related to their work [9] revealed the most important 
problems to be those associated with the size and complexity 
of developed systems (and the corresponding ACs) and with 
change management. The main underlying factors behind such 
challenges according to [9] were: limited tool support 
(inadequate to practitioners’ needs) and insufficient process 
integration between AC development and other project 
activities supported by other tools.  

Contemporary systems usually consist of a large number of 
subsystems and components, organized in multiple levels of 
decomposition [12][13]. Moreover, several versions or variants 
of such system can be developed by substituting some 
components with others or adding/removing components 
responsible for specific features, which results in families of 
similar systems i.e., product lines [14]. AC development tasks 
are interrelated with other activities dedicated to the 
construction of the corresponding system and the overall 
system development lifecycle [11][15]. The influence between 
them is mutual. On the one hand, an AC uses (as evidence) the 
products of other activities e.g. system architecture, hazard list, 
test results. On the other hand, the work on AC development 
can result in changes regarding design decisions or the need to 
perform additional quality assurance actions. Consequently, 
there is a need for process integration to ensure that traceability 
is maintained, and changes are promptly reflected in all related 
artefacts. Attempts to adopt the Agile approach to high-
assurance systems development [16][17] and recent ideas of 
continuous assurance [13][18] make this need even more 
crucial as shorter iterations and feedback loops require more 
rapid responses and more effective change management. In the 
case of Agile projects, automation is a necessary condition as 
they usually rely on DevOps and automated releases. 
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A number of AC-supporting software tools are available 
[19][20]. However, significant demand for advanced AC 
tools—especially with respect to scalability, modularization, 
automated generation, and traceability to external artefacts 
describing the AC context—is still reported [9][13][21].  

Modularization is an effective way to cope with complexity 
[22] because it makes it possible to partition an AC into 
separate but interrelated modules. When dividing an AC into 
modules and working on them separately, there is a need to 
ensure the right context for each module. By context, we mean 
the conditions under which a given AC argument is valid. The 
argument module may not be applicable in a different context. 
The context of each module needs to be explicitly defined in 
order to ensure the module makes a valid composition with 
other modules and that it is correctly reused. This is especially 
crucial for product lines, as many similar (but not exactly the 
same) components are used and a proper AC argument has to 
be provided for each version of each component. The 
information that defines the context is managed in various 
supporting tools and it becomes essential to enable a simple, 
universal approach to automated data transfer between such 
tools. 

We aim to provide a solution with the potential to address 
such concerns. To achieve this, in this paper, we identify the 
key factors that condition the high-level AC structure, explain 
how they can drive its decomposition into AC modules, and 
outline the process of creating and using context models. A 
main idea we introduce is the System Assurance Reference 
Model (SARM), which bridges the gap between ACs and the 
related context models. In this paper, we present: 

1. A concept of a unified context model which covers the 
complete AC context: the object (system, component), 
the assurance goals and the operational conditions. The 
idea is not to develop the context models from scratch 
but to integrate with the existing data which describes 
the context relevant to the AC process. 

2. The reference model which connects ACs with their 
context models on two levels: AC templates (reusable 
argument structures) with the abstract context model, 
and AC arguments with the concrete context model 
specific for a given system. The reference model 
supports modular ACs and enables two-way 
traceability.  

3. A grammar for parameters and conditions in AC 
templates to control the references to the argument 
context in the template instantiation process. 

4. The idea of context tree diagrams for the compact 
presentation of context dependencies in AC templates.  

5. The algorithm of modular AC generation from 
modular templates with the use of context models. 

6. Demonstration of the approach with the use of a 
prototype tool which implements argument generation. 

The remainder of this paper is organized as follows. In 
Section II, we describe the background and in Section III, we 
outline the main related work. Section IV introduces the 

concept of SARM and is followed by Section V, which 
provides more details about SARM logical design. In Section 
VI, we present an illustrative example of SARM application. 
The paper is concluded in Section VII.  

II. BACKGROUND 

A. Goal Structuring Notation 

GSN (Goal Structuring Notation) [7] is the most popular 
notation for ACs and it will be used in this paper. Fig. 1. lists 
selected elements of GSN (the ones that will be used in the 
remainder of this paper). 

Selected GSN elements 

  Goal    Solution 

  Strategy   Context 

  Justification   Assumption 

  Module  

GSN relationships 

 SupportedBy  InContextOf 

Fig. 1. Core GSN notation summary. 

GSN assurance cases include Goals which express claims 
about system properties. Strategies are used to explain the 
argument step including a given Goal and its supporting 
elements. A Justification provides a rationale that the reasoning 
defined by a given Strategy is valid and complete. An 
Assumption is a statement that is not argued nor demonstrated 
by evidence, but simply treated as true. A Solution represents 
an evidence item. A Context represents the contextual 
information for which the AC is valid. The reasoning and 
evidence support is indicated by the SupportedBy relationship, 
while the InContextOf relationship links additional elements 
such as Context, Justification and Assumption. The elements 
and relationships defined in GSN make it possible to develop 
complex argument structures.  

B. Methodological foundations 

Several methodological solutions have been proposed for 
ACs to cope with their complexity, to limit the impact of 
changes and to reduce the work effort necessary for AC 
development and maintenance: 

 Modules and contracts [22]-[24]: ACs can be 
partitioned into separate but interrelated modules. A 
module can be, e.g., dedicated to a particular 
component of the system or aimed at justifying a 
specific claim. The interrelationships between modules 
can be captured in contract modules. A contract 
module is placed between AC modules to ensure that 
one module provides valid support in the full context 
required by another module. The context of each AC 
module should be defined explicitly to use contract 
modules effectively. The correct management of the 
context of AC modules helps in effective argument 
encapsulation to make the AC architecture less prone 
to changes. It makes it feasible to change or replace 
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AC modules while maintaining the same context and 
without the need to change other modules. 

 Patterns [25]-[27]: An AC pattern is an abstract 
reusable argumentation structure that captures a 
repeatedly used successful argument. As such, AC 
patterns are analogical to the design patterns known 
from the software engineering domain. A pattern 
includes parameters (e.g. the name of the mitigated 
hazard). Such parameters need to be assigned concrete 
values in order to use the pattern in a particular AC—
this process is called pattern instantiation. Patterns can 
capture argumentation structures of different size and 
complexity, however, they are usually of a local 
nature, i.e. to be applied at a given step of argument 
decomposition. 

 Templates [28]-[30]: An AC template is a partially 
complete AC structure that can be determined 
beforehand for the specific system under consideration. 
For example, it can capture the requirements of a given 
standard or provide the structure of an argument 
commonly used for a given class of systems. A 
concrete AC can be constructed based on a template by 
extending the template with concrete evidence and 
possibly with more specific argumentation. The real 
difference between a template and a pattern is one of 
completeness—a template is a complete AC, in which 
claims are specialized for the specific situation [29]. 
Similarly to patterns, templates can include parameters 
to be instantiated when constructing a concrete AC. 

The effective use of such solutions is dependent on the 
availability of appropriate tools which support modularization, 
automated pattern instantiation (and maintenance), consistency 
control, change management and traceability. This can be 
achieved through integration with other tools used in the 
system life cycle to use available information relevant for ACs. 
The approach where ACs are constructed and maintained in a 
tool-supported, automated manner on the basis of information 
included in external artefacts (usually models) is called Model-
Based Assurance Case (MBAC) and is one of the most 
promising directions in the AC domain [31]. 

III. RELATED WORK 

Solutions enabling the automation of AC development and 
maintenance are a relatively recent achievement. The research 
in this domain includes the following areas: 

 Context models and traceability mechanisms between 
AC fragments and external artefacts and their consisting 
elements; 

 Automated development and/or maintenance of ACs 
through generation or update of their fragments based 
on external models (for example, a hazard model or a 
threat model). 

 Coexistence of automatically generated and manually 
managed arguments.  

ACs dedicated to the safety properties of a system are 
strongly dependent on hazard analysis uncovering the 
dangerous situations that could lead to accidents. As a result, a 
number of approaches aimed at partial generation of AC 
fragments dedicated to hazard mitigation have been proposed, 
e.g. [32]-[34]. 

Other essential artefacts guiding AC development include 
various system models (describing the considered system). 
Architecture Analysis & Design Language (AADL) models 
developed in tools such as OSATE [35] or AutoFocus [36][37],  
as well as multiple other models [38], were used as a basis for 
automated generation. Also, architectural design patterns 
expressed in Unified Modeling Language (UML) can drive AC 
fragment generation [39]. 

Apart from the arguments related to the considered system 
itself, AC often also covers so-called process aspects, i.e. 
argues that the process of system development follows the 
requirements of standards and/or good practices. Thus, 
attempts have been made to model the development process 
and to use such models to generate the corresponding 
fragments of ACs [40]-[42]. Other possible artefacts driving 
automation include safety contracts between system 
components [14][43] and the results of formal code analysis 
provided by another tool [44]. 

The individual artefacts and information sources mentioned 
above can also be combined to provide a more comprehensive 
basis for AC generation. A quite widely explored path covers 
the combination of system architecture and information about 
hazards and/or safety requirements [45]-[48]. Another 
possibility is the use of both system and process models to 
include product-based as well as process-based aspects in an 
AC [49]. A more generic approach, where an AC can be 
designed using an artefact tree consisting of various external 
artefacts and definitions of relations between them is also 
possible [50]. A proposal dedicated to ACs for machine 
learning models, using Operational Design Domain (ODD) 
models and training datasets as artifacts driving automation, 
can be found in [51].  

Despite the availability of methodological approaches and 
tools, the foundations of MBAC, such as a formal or semi-
formal definition of parameters or an algorithm responsible for 
the instantiation process, are rarely described in detail. 
Formalized definitions of AC patterns and their parameters are 
presented in [45][52][53]. Less formal ones, based on the 
Structured Assurance Case Metamodel (SACM) metamodel 
[31] or Extensible Markup Language (XML) [47][48], can also 
be found. The algorithms defining the instantiation process are 
published (as pseudocode or an algorithm based on formal 
definitions) in [26][38][40][43][46][53]. 

Our proposal differs from the related works presented 
above by the following distinguishing features: 

 The other works focus on system models, goals 
(requirements or addressed hazards) or a combination 
of both. The environment, including different 
operational situations/modes as well as environmental 
conditions, is however not explicitly covered, while 
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such aspects may be crucial for many systems [54]. At 
the same time, the importance of the context is 
increasingly recognized—for example, the concept of 
Operational Design Domain (ODD) was identified and 
included in recent standards for autonomous driving in 
automotive [55][56]. Only [51] deals with ODD, but 
for a very specific use case of arguing the safety of 
machine learning models applied to automated driving 
systems. Our approach is therefore a more general one, 
allowing the system to describe various elements of 
context in a uniform way and to include a broader 
scope of external artefacts. 

 The existing proposals, except [14], aim at generating 
particular AC fragments dedicated to, e.g., a given 
hazard, requirement or system component. We focus in 
this paper on high-level AC decomposition into 
modules and providing initial templates for each 
module to enable its further development.  

IV. CONCEPT OF SYSTEM ASSURANCE REFERENCE MODEL 

Our goal is to manage the AC context in an explicit and 
systematic way with the use of a general context model. As we 
could not find any solution that was ready to use, we decided to 
develop a System Assurance Reference Model (SARM) to 
address the problem. Our main goals and requirements for the 
models and the process of their use can be summarized as 
follows: 

 The solution should provide a uniform way to manage 
references to any type of context models relevant to 
ACs. It cannot be limited to a specific subset of models 
with respect to their purpose or type (e.g. system 
models, hazard models, requirements models, process 
models).  

 The models should operate at two levels: the abstract 
level of argument templates, which are applicable to 
specific types and classes of systems, and the concrete 
level of argument modules for specific systems and 
devices. 

 Traceability in both ways should be provided between 
the abstract and concrete levels of the model. The 
solution should be capable of answering questions such 
as which AC modules apply for a specific device.  

 The solution should support reuse to the greatest extent 
possible with regard to both ACs (e.g. an AC template 
that can be instantiated for different systems or 
components) and context models (e.g. a given model is 
referenced in different parts of an AC). 

 Scalability has to be provided. The number and size of 
the context models (e.g. for product lines and/or 
systems built from a large number of separate, out-of-
context components) can be substantial, but that cannot 
limit the application of the intended solution.  

 The approach should support the evolution of all 
models and maintain consistency. No restrictions of 
independent changes in context models can be 

accepted. Also, argument templates may evolve and be 
modified. The approach should support the evolution 
process, provide for traceability of all changes and 
control the consistency of all interrelated models. 

 The approach should allow the use of any data format 
for source context models. When necessary, a method 
of model transformation should be provided. 

Our further considerations will be based on the following 
definition of an AC, which is a slightly modified variant of 
existing definitions (e.g. [7]). In the definition, we have 
highlighted the sections relevant to our goals. 

An assurance case provides confidence that the described 
system (object of the argument) guarantees satisfaction of the 
assurance requirements under the assumptions of the specified 
context of use. 

AC top claims are usually defined with three main types of 
context information: (1) the system (the object of the 
argument), (2) assurance goals (e.g. safety requirement, 
assigned Safety Integrity Level, regulations to comply with) 
and (3) the environment and conditions of use (e.g. flight 
phase, weather conditions). Each AC argument can be 
understood as a statement and justification of some guarantees 
(assurance goals), provided that some assumptions (context of 
use) are satisfied. For example, a medical device is safe in 
operation, provided that it is used by trained clinicians in an 
intensive care hospital environment.  

Each type of context information may be used for AC 
decomposition into modules. A user may decide to decompose 
an AC into modules according to assurance goals, such as 
safety, security and conformance to specific standards. Another 
approach is to develop AC modules for a system, its 
subsystems and components.  

The model describing the system conditions of use can also 
be used in the argument decomposition. Separate argument 
modules or branches can be developed for different conditions 
of use, e.g., military and civilian missions, vehicle operation in 
populated or unpopulated areas, or in summer and winter 
conditions.  

Context models for ACs usually cover system architecture, 
the risk model and assurance goals, the environment and 
conditions of use. From the perspective of a person responsible 
for AC development there is a need for a generic and uniform 
way of referring to the context elements in the argument. 

We assume that each element of the context model can be 
referred to with an URL address. On the AC side we use the 
tool that provides unique URL address for each argument 
module and element. This will enable tracing dependencies in 
both directions. 

It is important to emphasize that our objective is not to 
propose any new context models or a new notation to express 
them, but to track the relations to the models used in industrial 
practice in order to manage ACs in a more efficient way. 

Our proposed solution is called SARM (System Assurance 
Reference Model). The main components of SARM are shown 
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in Fig. 2. The arrows in the diagram indicate that the given 
component is based on another one. An arrow from A to B 
means that B is defined using elements (terms) from A. In 
practice, it is implemented with references (links) from 
elements of B to elements of A.  

 

Fig. 2. Main components of SARM.  

Abstract Context Model (ACM) defines the terms of the 
context model to be used in the AC templates and, 
consequently, in the AC arguments. The terms have to cover 
the object-conditions-goals triad mentioned earlier. It is not our 
intent to create a complete model covering the needs of any AC 
application, therefore, the terms defined in such a model will 
differ for different applications. For example, the context 
model can include a system’s physical or functional 
architecture. As for assurance goals, the context of a safety 
case can include the risk model: the terms of hazards, their 
causes and safety requirements, while a security case would be 
based on terms such as threats, vulnerabilities, etc. 

Assurance Case Template (ACT) is an argument template 
(the explanation of AC templates is provided in Section II), 
which refers to the terms defined in a specific ACM. For 
example, a template for arguing a system’s safety by 
addressing hazards with safety functions assigned to particular 
subsystems would require references to the terms “system”, 
“subsystem”, “hazard” and “safety function” defined in the 
corresponding ACM. The template can be divided into a set of 
modules. An example is presented in Fig. 3. 

System Context Model (SCM) describes the context for a 
particular system including information about the assurance 
goals and conditions of use. The model should use the terms 
defined in the ACM. For example, the architectural 
decomposition of a considered system into subsystems can be 
described using the model of system decomposition into 
subsystems: the Autonomous Vessel X (system) is composed 
of the Situation Awareness (subsystem) and the Control 
Execution (subsystem).  

Assurance Case Argument (ACA) is based on a template 
(ACT) and on a system context model (SCM). The argument 
(ACA) is a result of the templates’ (ACT) instantiation using 
the context information (SCM). The SCM is used to fill the 
ACA with specific content, including, e.g., the names of the 
subsystems, safety functions implemented by them, hazards 
addressed by those safety functions, etc. When the template is 

divided into modules, the instantiated AC architecture will 
follow the same decomposition. 

The SARM model is accompanied by the process of its 
development and maintenance. The process is outlined in 
Fig. 4 and consists of the steps explained as follows. 

 

Fig. 3. Example of a hierarchy of AC modules.  

A. Step 1 

Step 1 is dedicated to the abstract models that provide the 
basis for the models created in the subsequent steps. The 
objectives of Step 1 are to: (1) Develop an ACM, which should 
define the terms relevant to ACs for a given domain and 
objective (e.g. class of systems, conformance to a specific 
standard); (2) Develop an ACT (i.e. a template) using the terms 
defined and included in the ACM. We describe these activities 
together because we consider them to be closely related. Even 
though the ACM is a more “basic” model, its contents can be 
influenced by the needs identified during the template 
development. When a new term to describe argument modules 
or branches in the template is needed, it is necessary to revert 
to the ACM definition and to extend the ACM with the 
required properties. We recommend the strategy of defining the 
minimum required scope of the ACM. The context models 
should be kept as simple as possible and contain only the 
information needed in the ACs. Usually, this will be a small 
subset of the complex models used in system development. 

B. Step 2 

In this step, an SCM is created to describe a specific 
system. It defines a set of objects being the instances of classes 
defined in the ACM. Each element of the system context 
should be described as an object following the abstract context 
model (ACM). The system description should provide a 
complete set of information for the template instantiation. 

C. Step 3 

The goal of this step is to develop an assurance case 
argument (ACA). This step consists of both automated and 
manual parts. The automated action is the generation of the 
ACA based on the template (ACT) with the use of context 
information (SCM). This is the first action, as it creates the AC 
modules that can then be supplemented by manual actions. 

The manual part is the development of low-level argument 
sections and providing the evidence. The manual part should 
not interfere with the automatically generated argument parts 
to maintain the consistency with the context models.  

In this paper, we mainly focus on the automatic generation 
of modular arguments. The aspects of coexisting automatic and 
manual argument development and maintenance are beyond 
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the scope of this paper and are not discussed in detail. Our 
basic approach is that the users should extend the generated 
arguments, but not modify the automatically generated content. 

D. Step 4 

Step 4 covers the maintenance of the assurance case 
argument (ACA). This includes changes in any of the other AC 
modules. There are generally two main types of model 
changes. The first and the most common type is the change in 
the system context. The system architecture can be modified, 
or its goals may be refined, or the conditions of use may 

evolve. Any of these changes (in the SCM) may require an 
update of the argument (ACA). The second type is the changes 
in the templates. Sometimes they may also imply changes to 
the context model ACM. In some cases, they may also require 
extending the system description in the SCM.  

The evolution of SARM models should ensure the 
consistency is maintained between the related models. We are 
aware of the importance of this step, however, we will not 
address maintenance issues in this paper. 

 

Fig. 4. Process of SARM definition and use. 

V. SARM LOGICAL DESIGN 

In this section, we will describe the models used to 
implement the concept introduced in Section IV and present 
the algorithm for automatic AC generation based on the 
templates (ACT) and system context model (SCM). 

We designed a SARM as an extension of the argument 
model we used in the NOR-STA tool [57]. As we represent the 
perspective of NOR-STA’s manufacturer and provider, we 
intend to implement the SARM as part of this tool, but 
currently, we are still exploring prototype solutions. Our goal is 
to keep the model used to perform the process described in the 
previous section as simple as possible. There is no decision yet 
whether the model should be based on the SACM metamodel 
[58]. The Artifact Metamodel would probably be useful to 
define the context information for the ACs, but at this stage of 
our work, we have not decided yet. 

The SARM model consists of four parts and we will 
discuss them in the order they were developed. 

A. Abstract Context Model (ACM) 

The purpose of the ACM is to be referred to in the ACT, 
and this model should be developed first. The ACM model 
should make it possible to define any context models relevant 
to the ACs, so we will keep it as generic as possible. One could 
say that this should be a simple ontology. We followed this 

direction and defined two classes to allow the declaration of 
context objects and their properties.  

 

Fig. 5. Class diagram of System Assurance Reference Model (SARM). 
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The first one is used to define classes of objects (its name is 
Class, with a capital “C” in its name). The second class defines 
the Attributes. An Attribute can refer to any Class defined in 
the ACM or to a predefined Class which implements a basic 
data type such as “integer” or “string”. When the type of an 
Attribute is another Class defined in the model, we allow 
multiple values, i.e. a list of objects can be used as the value in 
the model implementation.  

The ACM model consists of two classes only, but it is quite 
powerful and makes it possible to define any context objects 
and the relations between them. The model is presented in the 
lower left part of the diagram in Fig. 5. 

B. Assurance Case Template (ACT) 

We understand an argument template to be an abstract 
argument structure which contains a top claim and an almost 
complete argument. The result of a template instantiation is an 
argument module which may not be complete, in particular the 
appropriate evidence for the module context is still missing and 
should be provided. 

The templates will refer to the ACM and we will use two 
types of references, which correspond to the two forms of 
abstraction defined in section 2:8.1 of the GSN Community 
Standard version 3 [7]. The parameters and conditions 
described below are our extension of GSN patterns, introduced 
for the purpose of formalization of model references: 

 Parameters are used to specify references in argument 
templates. This implements the element abstraction 
defined in the GSN Standard. An example is the 
parameter “{Component C}” presented in Fig. 6. 
Parameters are used in ACT elements to indicate the 
need for their instantiation for each specified context 
entity. Parameters can also include dependencies. The 
parameter “{Contract K | C.contracts}” says that the 
element of the template should be instantiated for 
every contract K of the given component C. 

 Conditions are used to manage conditional branches 
of the argument. This corresponds to the structural 
abstraction in the GSN Standard. Attributes of the 
context objects can be used to define conditions. For 
example (see Fig. 6), the argument branch with the 
condition “[C.subcomponents]” will be implemented 
only when component C has some subcomponents. 
The other argument branch will have a condition with 
an exclamation mark to denote negation—
“[! C.subcomponents]”. This template element will be 
instantiated only when component C does not have any 
subcomponents. 

The described mechanism of conditions in the SARM 
differs from the structural abstraction defined in the GSN. The 
GSN choice element (section 1:3.2.3 in [7]) makes it possible 
to define the relation ‘N of M’ for a group of argument 
elements. The problem with the automatic argument generation 
is that the criteria under which N elements out of M should be 
selected is not clearly defined. Instead of the ‘N of M’ choice 
operator, we propose precise definitions of the conditions 
specific to each template element. 

 

 

Fig. 6. Claims in AC template with parameters and conditions. 

The parameters and conditions are presented in the 
template elements in brackets and they follow the syntax: 

Parameter := <class> <object> [ <object>.<attribute> ] 

Condition := [<negation>] <object>.<attribute> [<operator> <value>] 

The (simplified) ACT model is presented in the upper left 
part of the SARM diagram (Fig. 5). It contains classes to 
describe the parameters and conditions as an extension of the 
template argument model. This is presented with the 
TemplateElement class, and we do not present any other 
classes used in the ACT. In particular, the relations between 
the template elements and interfaces are not presented in the 
model. 

The context objects set for a specific argument element are 
inherited to all its child elements. To avoid potential conflicts 
of the context objects, we assume that the template has a tree 
structure. This assumption is implemented with the parentId 
attribute in the TemplateArgument class. 

C. System Context Model (SCM) 

SCM describes a concrete context model which is to be 
used for a specific AC. It is shown in the lower right part of the 
SARM diagram (Fig. 5). The model includes instances of 
ACM classes that describe a concrete system, its goals, and 
conditions of use. The method of creating SCM objects 
depends on the system design process and the tools used. If 
some modeling methods are used for a system (UML, AADL, 
etc.), an SCM could possibly be extracted from these models. 
Another source of the model data can be the Operational 
Design Domain (ODD). Finally, some context data cannot be 
formalized and may require a dedicated solution. 

Regardless of the method of development of the SCM, it 
should be consistent with the abstract model (ACM). If there 
are difficulties defining the SCM based on the existing model 
structure, a return to the first step should take place (to extend 
the ACM with the required new classes or attributes). 

The relationship between the abstract and concrete model 
for a specific system is illustrated in Fig. 7. All entities in the 
SCM  should refer to their ACM counterparts. 
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Fig. 7. Relations between objects of the system (on the right) and the abstract 

(on the left) context model. 

D. Assurance Case Argument (ACA) 

The argument (ACA) modules are to be generated from the 
ACTs based on the context model (SCM). They should 
maintain relations to both the ACT and SCM. This model is 
presented in the upper right part of the SARM diagram (Fig. 5). 
The class ArgumentElement denotes the base argument 
element (Goal, Strategy, etc.) and further details of it are not 
presented. The relation to the SCM is an extension of the base 
model specific for the SARM. 

The ACA is a model of modular arguments that is to be 
generated from other models. We have developed an algorithm 
to generate the arguments, which is presented in Fig. 8. The 
argument generation is performed in three steps (described in 
the algorithm). 

1. Identification of all possible modules for the provided 
templates and the system models. 

2. Generation of argument bodies for each module. 

3. Connecting the argument modules with interfaces 

VI. ILLUSTRATIVE EXAMPLE 

Generating modular ACs using SARM models will be 
demonstrated using an illustrative example with a small system 
consisting of four components. The example will involve the 
use of a modular template which contains references to the 
SCM.  

In the example, we will use our prototype SARMER tool. 
The tool supports generating modular arguments according to 
the algorithm presented in Section V using SARM models. The 
JavaScript Object Notation (JSON) data format is used for all 
models to provide easy integration with other tools. The input 
data consists of abstract and system context models (ACM and 
SCM), and an assurance case template (ACT). The tool 
performs an analysis of the input models and produces the 
model of a modular assurance case argument (ACA) in JSON 
format. Additionally, in the last step, SARMER produces an 
XML file to import the generated modular ACA into 
NOR-STA. 

GenerateACA(ACM, ACT, SCM) 
    Create argument modules 
    Generate bodies of argument modules 
    Bind modules with interfaces 

Step 1. Create argument modules 
    For each template 
        get the top claim and its context parameters 
        find all possible objects which satisfy the context requirements 
        for each possible set of objects 
 create an argument module 

add top claim and set its context objects 
 

Step 2. Generate bodies of argument modules  
    For each argument module 
        get the top claim and its context 
        ExpandElement(top-claim) 

    Procedure ExpandElement(element) 
        find a corresponding templateElement for the element 
        if templateElement has no children 
            then return 
        for each child of templateElement 
            CreateChildren(element, child) 

    Procedure CreateChildren(element, templateElement) 
        if templateElement contains a condition 
            if condition is not satisfied 
                then return 
        if templateElement does not contain any parameter 
             or there are no new parameters 
             then  create element from templateElement under element 
      with the same context inherited 
      ExpandElement (createdElement) 
      return 
         identify new parameters in the templateElement 
         search objects for the new parameter(s) in the current context 
               for each new object found 
   create new context = the current context and the new object 
   create element from templateElement under element 
                with the new context 
   ExpandElement (createdElement)  

Step 3. Bind modules with interfaces 
    For each argument module 
        for each element E in the module with a required interface 
            find a corresponding templateElement 
            read the interface of the templateElement 
            find a supporting template 
            for each argument module A based on the supporting template 
                if E.context is the same as the context of the top claim in A  
     bind E to the top claim in A 

Fig. 8. Algorithm description. 

The prototype tool has some limitations, including a 
simplified user interface and error reporting. Another 
simplification concerns the types of conditions implemented in 
the templates. Currently, the only implemented conditions are 
the checks if a given attribute value is null or not. The tool 
implements AC generation, but the functions to update the 
arguments when the context models change have not been 
implemented yet. 
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We have selected a simple component-based system for our 
example. The goal of the argument will be to demonstrate that 
a given component satisfies its assurance-guarantee (AG) 
contract. The first sample system we analyze is described in 
[14]. This is the Csys component, which is composed of three 
subcomponents: C1, C2 and C3. Assurance-guarantee (AG) 
contracts are used to describe the behavior of each component. 
The structure of the system is presented in Fig. 9. Symbols A 
and G denote the assumptions and guarantees of specific 
components. The arrows with k labels present contracts. An 
assume-guarantee contract is a property, meaning that a given 
component ensures that if the assumptions A are satisfied, the 
guarantees G are also satisfied. A simple example is a contract 
for a lamp: the assumptions are “the switch is in the on 
position” and “power is on”, and the guarantee is “the lamp is 
lit”. Some contracts are relevant for safety and ACs are 
developed to demonstrate that the component correctly 
implements the assigned contracts. 

Demonstrating that the components satisfy their contracts is 
not sufficient. A composition of contracts of components 
should follow specific rules. For example, it should be 
demonstrated that a guarantee of one component is sufficient to 
satisfy an assumption of another component. These relations 
are called refinements. They are denoted with r labels in the 
diagram in Fig. 9. For more information on how AG contracts 
work and for sample system details, please refer to [14]. 

 

Fig. 9. System model used in the example. 

The design of a composite component is considered correct 
when its contract is implemented with a continuous sequence 
of refinements and contracts of subcomponents. Contract k1 of 
component Csys in Fig. 9 is implemented by the sequence 
(((((r2, k3), (r1, k2)), r3, k5), (r1, k4)), r4). The implementation 
of k1 is complete and there are no redundant relations. 

The example will be presented in three steps according to 
steps 1–3 of the process described in Section IV. The first step 
is to define the ACM and ACT. While it is possible to develop 
large and complex ACMs, our recommendation is to develop 
the general ACT structure first and then see what references 
are needed in it. The ACM should fit into the scope of the 
information needed for the ACT. 

We used the NOR-STA tool to develop the AC templates 
(one is presented in Fig. 10) based on the schema described in 
[14]: 

‒ For a composite component, we need to demonstrate that:   

‒ the component composition is correct, and 

‒ every refinement in a given component is satisfied, and 

‒ every subcomponent satisfies its contracts. 

‒ For a primary component we need to demonstrate that: 

‒ every allocated contract is satisfied. 

 

Fig. 10. Assurance case template for a component. 

The main concepts that we need to define in the ACM are: 
a component, a contract and a refinement. We will also need 
references to assumptions and guarantees in the template for a 
contract argument. Assumptions and guarantees are defined as 
specifications. Each specification has a ‘type’ attribute to 
indicate if it is an assumption or a guarantee. The ACM is 
presented in Fig. 11. It will be used for references in the ACT. 

 

Fig. 11.  Abstract context model (ACM) for component-based architecture. 

In our example, we use the JSON format to represent the 
model. This data format is quite easy for humans to operate. 
We prepared the data for this example manually, but it is 
planned to be automated in the further phases of our work. In 
Fig. 12, we present a simplified fragment of the JSON file we 
used. We removed some parts from the JSON sample (e.g. 
identifiers) to make the code sample smaller for this paper. It 
presents the two main classes used in the ACM. 

 A Contract class with two attributes: an assumption 
and a guarantee. 

 A Component class, where a component can contain 
subcomponents (objects of class Component) and 
contracts (objects of class Contract). 
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Fig. 12. Excerpt of ACM definition in JSON format. 

The ACM is referred to from the ACT. The ACT contains 
three modules, one of which is presented in Fig. 10. The 
templates include parameters and conditions referring to the 
classes defined in the ACM. The data describing the 
parameters and conditions in the template can be extracted and 
presented in the form of a context tree, as presented in Fig. 13. 
A context tree presents a clear view of the complete argument 
context at an abstract level. Finding all dependencies in larger 
arguments takes time and this type of diagram speeds up this 
process. We find this diagram to be useful for tracking 
argument dependencies. 

The two abstract models—for the context references 
(ACM) and for the template (ACT)—are now complete. The 
next steps are performed for a specific system. The system we 
analyze is presented in Fig. 9 at the beginning of this section. 

The SCM is developed using the JSON format. The model 
includes objects of classes defined in the ACM. This is quite a 
simple process, but we had to make one correction to the 
system structure presented in Fig. 9. The component C1 has a 
guarantee G2 and no contract inside it. The argument template 
requires a component to have contracts or subcomponents and 
C1 does not satisfy this requirement. We extended the system 
model with an additional contract, k6, with a null assumption 
and the guarantee G2. 

 

Fig. 13. Context tree of the ACT for a component. 

The completed models provide sufficient data to generate 
the ACA for the specified system using the specified templates. 
This ACT consists of three modules and the result of argument 
generation is a set of interconnected argument modules of three 
types: for components, contracts and refinements. The modular 
AC presented in Fig. 14 consists of 14 modules: four modules 
for components, six modules for contracts (including the k6 
contract described above) and four refinement relations. 

The SARMER tool produces a single XML output file 

which defines the generated AC modules. The file can be 

manually imported into the NOR-STA tool. It is planned to 

automate this step using the NOR-STA API interface in the 

future. Diagrams like in Fig. 14 can be generated in NOR-STA 

when the ACA model is imported into the tool. 

 

Fig. 14. Modular diagram of the generated assurance case. 

VII. CONCLUSIONS AND FUTURE WORK 

Automation is practically a necessity for the management 

of large-scale ACs. We have presented a generic approach of 

AC architecture management based on context models. This 

reduces the need to manually develop large parts of AC 

arguments and it is expected that it will reduce the number of 

mistakes and problems with the arguments’ correctness. 

The System Assurance Reference Model (SARM), used to 

control the assurance case generation, can cover a broad scope 

of information including system architecture, assurance goals, 

risk models, environment and system life cycle activities. The 

reference model can be used at both levels of the abstraction: 

templates and concrete arguments. The reference model 

enables traceability of relations in both directions, to and from 

the context model. We have presented the logical design of the 

reference model and the algorithm for modular AC generation. 

This was implemented with the prototype SARMER tool and 

demonstrated in an illustrative example of a modular AC for a 

simple component-based architecture. 

We plan to conduct several more thorough industry case 

studies in order to verify whether the SARM model is 

complete and efficient in use for large systems and product 

lines. The case studies will also help in identifying the need to 

extend the parameter and condition mechanisms for assurance 

case templates. 

The technology used in the SARMER tool provides easy 

extension and integration with other systems. Our intention is 

to continue further development and extension of the tool to 

enable AC maintenance, provide an easy-to-use mechanism of 

model change management and automate data between 

different tools integrated in the system assurance process. 

Later, we plan to incorporate such functionality into the 

NOR-STA tool. 

{ "classes": [{ 

    "name": "contract", 

    "attributes": [ 

      { "name": "assumption", "type": "specification" }, 

      { "name": "guarantee", "type": "specification" }] 

  }, { 

    "name": "component", 

    "attributes": [ 

      { "name": "subcomponents", "type": "component" }, 

      { "name": "contracts", "type": "contract" }, 

      ... 
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